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Abstract--The dynamic behavior of coupled continuous stirred tank reactors in which the nonisother- 
mal Langmuir-Hinshelwood type reactions occur, exhibits several types of pattern formation. The regular and 
irregular multipeak patterns are detected for the endothermic reaction of a Langmuir-Hinshelwood type 
when the heat communication between the neighboring cells is larger than the mass interaction. These ob- 
servations may imply the possible existence of spatial structure in a matrix of calalysls, the non-uniform distri- 

bution of concentration and temperature in packed bed reactors, and corrugated propagating fronts in com- 
bustion problems. 

INTRODUCTION 

During the past decades the non-uniform steady 
states emerging from a perfectly homogeneous steady 
state, have received a great deal of attention. Pattern 
formation in developmental biology, Benard convec- 
tion in fluid dynamics, formation of coherent light in 
the laser, and occurrence of spatio-temporal concentra- 
tion and/or temperature waves in chemically reacting 
systems are well-known examples of stable ordered 
structures evolving from an unstable uniform state. 

The pioneering work on pattern formation was per- 
formecl by Turing[1]. He studied a mathematical 
model of a growing embryo and suggested that a sys- 
tem of chemical substances, called morphogens, re- 
acting together and diffusing through a tissue, is ade- 
quate to account for the main phenomena of morpho- 
genesis. Such a system, although it may originally be 
quite homogeneous, may develop a pattern of struc- 
tures due to the instability of homogeneous equilib- 
rium, which is triggered off by random disturbances. 

Since then a plethora of papers have appeared to 
use Turing's idea toward structure formation pheno- 
mena in various disciplines. Goodwin[2] proposed a 
phase-shift model for spatial and temporal organi- 
zation in developing systems. Goldbeter[3] studied 
one-dimensional pattern formation for an allosteric en- 
zyme reaction and detected standing as well as pro- 
pagating concentration waves. The parameter domain 
of spatial structures for several models in an attempt to 
elucidate the Turing's pattern formation, was in- 
vestigated by Murray[4]. Catalano et al.[5] 

demonstrated various types of pattern formation for 
allosteric enzyme reactions in the one-and two-dimen- 
sional space. 

It should be noted that all authors mentioned 
above considered isothermal systems. In this paper we 
consider an array of nonisothermal continuous stirred 
tank reactors in which a Langmuir-Hinshelwood type 
reaction occurs. The spatial structures are investigated 
for the geometry of multiple cells in the one-and two- 
dimensional space. The effect of geometry and system 
size on pattern formation will be also discussed. 

GOVERNING EQUATIONS 

Consider an one-dimensional array of CSTRs with a 
string and ring configuration (see Fig. 1). The mass and 
energy balances for these systems, in which a Lang- 
muir-Hinshelwood type reaction occurs, are represen- 
ted by coupled differential equations in the dimension- 
less form: 

dX 
. . . .  1 - X - R  (X, Y ~ +,u,,,~X (1) 
d r 

d-V= ]-Y.+a'E~:X, Y~+v, AY ,'2> 
d r  -- = -  

where 

aX 
R ,IX, Y ) =  (1+ 1-'~( 1 ,_ . .  e r/~ r 

under the following assumptions: 
{1) The cell volume, the feed composition and tem- 

perature, and the flow rate to all cells are identical. 
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Fig. 1. Schemat i c  d i a g r a m  of i n t e r a c t i n g  CSTRs. 

The geometry is: (a) string (b) ring. 

Thai means every cell in Fig. 1 is exposed to the same 
surroundings. 

(12) A single chemical reaction occurs in each cell, 
the rate of which differs from one CSTR to another on- 
ly if the concentration of a single component and the 
temperature vary. 

(:3) The rates of exchange of mass and heat between 
neighboring cells may be described by the product of 
an exchange coefficient and the concentration and 
temperature difference. 
In this paper the i-th element of the vector quantities, 
X and Y, refers to the dimensionless concentration 
and temperature at the i-th cell, respectively. We have 
also denoted/? the dimensionless heat of reaction, u 
and L the dimensionless kinetic constants, ;' the di- 
mensionless activation energy, C~, the feed concentra- 
tion. To the feed temperature, q the feed flow rate, V 
the volume of a CSTR, ~m and ,ut the dimensionless ex- 
change coefficients of mass and heat between neighbo- 
ring cells, respectively and r the dimensionless time 

E 
Y= RTo 

,: - AH: Co 
~ =  pC~To 

C41 

The structure matrix, ~ ,  represents the geometry 
of systems in question. For the one-dimensional con- 
figuration shown in Fig. 1, the structure matrices for 
the string (~.0 and ring (At) are given by 

0 ......... !/ 
1 - ' 2  1 0 ...... 

~ =  0 1 - 2  1 0"" {5) 

0 .. . . . . . . . . . . . . .  0 1  - 

and 

1 - 2  1 0 0 

~ =  1 - 2  1 0 . . . . . .  0 i6) 

i 

0 0 ...... 1 -  

Eigenvalues and eigenvectors of these structure mat- 
rices are well known and the details are reported in 
the literature[6,7]. 

From a chemical engineering viewpoint the descri- 
ption for an assemblage of catalysts can be visualized 
as an array of CSTRs. The interacting protrusion from 
catalytic wire (fuzzy wire model) proposed by Jensen 
and Ray[8] and the monolithic catalytic converter 
which, by virtue of its design, has a large number of in- 
teracting parallel flow channels, are also described by 
interacting local reactors. 

L I N E A R  S T A B I L I T Y  A N A L Y S I S  

The number and character of steady states in a sin- 
gle cell are readily reduced from Eqs. (1) and (2). Its 
mathematical description is obtained by setting the ex- 
change coefficients, ,u,~ and ,ut, to zero and changing 
the vectors to scalar quantities with eliminating the 
subscript i. It is obvious that a steady state of a single 
cell is also a steady state of an array of cells, regardless 
of the magnitude of u~ and,u~. We shall refer to these 
states as the "uniform steady states". There are one, 
three or five uniform steady states[6] ; the number cor- 
responds to the number of steady states for a single 
cell. These uniform steady states arise when the ex- 
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change coefficients between the neighboring cells 
have extremely large values. 

The stability analysis of uniform steady states in 
the cellular network was developed in a very elegant 
way by Othmer and Scriven[7]. Using their approach, 
the effect of changes in the network topology on the 
dynamic pattern of interacting multiple (:ells, can be 
treated systematically. They also predicted the occur- 
rence of standing or travelling waves. Kennedy and 
Aris[9] demonstrated the bifurcation of uniform 
steady states to the asymmetric steady states and 
homogeneous oscillatory motion. 

In order to examine the stability of uniform steady 
states the linear stability analysis is applied in this 
work. When the system equations (1) and (2) are line- 
arized about a particular uniform steady state, the sta- 
bilily is determined by the eigenvalues of the following 
reaction-and-transport matrix, A: 

- 1-  OR OR ] 

A= a~ ~ ,u,~,~ - O~ (7) 

aR 1 ~ aR 

where Xs(s= 1,2 . . . . .  N) are the eigenvalues of the 
structure matrix (~). The partial derivatives in Eq. (7) 
are evaluated at auniform steady state. 

In order to determine the stability of uniform 
steady states to infinitesimal perturbations, the pro- 
cedure is first, deduce the structure matrix of the geo- 
metry and calculate its eigenvalues ,,I.~; and second for 
each of the N numbers, .k~, calculate the eigenvalues es 
of the reaction-and-transport matrix, A. Then if all 2N 
eigenvalues, ~, have negative real parts, the uniform 
steady states are stable. If one or more of these eigen- 
values have positive real parts, the uniform steady sta- 
tes are unstable. 

NUMERICAL RESULTS 

Numerical computation of symmetry breaking was 
performed for an array of nonisothermal continuous 
stirred tank reactors in which the endothermic Lang- 
muir-Hinshelwood type reaction takes place. The 
values of the governing parameters are reported in 
Table 1. 

Table I. The v a l u e s ~  governing parameters 

a= 4.52 x 10 4 

,8 = -0.2 

7= 5.5 

L= 15.0 

15 

10 N=2 

l 

0 0.5 1.0 

Fig. 2. Instability region of uniform steady states for 
the string. 
- -  total cell number is 2 
. . . . . . .  total cell number is 10 

The instability region in(~m, ~t) parametelr plane 
for the string is depicted in Fig. 2. The parameter 
values of,a m and ,u t in the upper part of solid and dot- 
ted lines give rise to the instability of uniform steady 
states for ten and two interacting cells, respectively. 
The instability region of a uniform steady state is enlar- 
ged with the increasing number of cells. This implies 
that the symmetry-breaking instability strongly de- 
pends on the length of the system. 

The concentration and temperature histories for an 
array of ten cells in the configurations of the string and 
ring with the values of ,urn and ,a t in the instability 
region, are depicted in Figs. 3 and 4, respectively. The 
number in these figures represents the cell number 
and the perturbed cell is described as the asterisk (*) 
on the cell number. The transient concentration and 
temperature diverge from an initial state, very close 
state to the uniform one, eventually come to rest at a 
stable nonuniform state. These results state that if ten 
cells were extremely well isolated, each would remain 
in that state for any kind of perturbation. As they are 
brought into closer communication through the mass 
and heat transfer, the stability of each cell will be lost 
spontaneously and every cell will travel to the new 
steady states. 

The spatial profiles for the same parameter values 
as those in Figs. 3 and 4, clearly show the occurrence 
of spatial structure in the geometry of the string and 
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Fig. 4. T r a n s i e n t  b e h a v i o r  of u n s t a b l e  u n i form 
s teady  s tates  in a ring: (a) concentrat ion (b) 
temperature. /~m = O. l , / ~ t=0 .5 ,  N= I0. 
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Fig. 5. Spatial  profi les  in the string:  (a) concentrat ion (b) temperature . /~m=O. l , /~ t - -0 .5 ,  N= 10. 

Time is; (1) 0.0, (2) 10.0, (3) 20.0, (4) 30.0, (5) 40.0, (6) 50.0, (7) sleady state. 
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Fig. 6. Spatial profi les  in the ring: (a) ,concentration (b) temperalure . /~m=0.1 ,~t=0 .5 ,  N= 10. 
Time is; (1) 0.0, (2) 10.0, (3) 20.0, (4) 31).0, (5) 40.0, (6) 50.0, (7) steady state. 
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Fig. 7. Spatial temperature profi les  in the str ing.  
~um=0.1,/Jt= 0.5, N=20 .  
Time is; (1) 0.0, (2) 10.0, (3) 20.0, (4) 30.0, (5) 40.0, 
(6) 50.0, (7) steady state. 

ring, respectively(see Figs. 5 and 6). Of course some 
difference in the spatial profiles of steady states exists 
between the geometry of the string and ring. The effect 
of cell number(or  length of the system) on spatial 
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structures is shown in Fig. 7 comparing to the corres- 
poncling profiles in Fig. 5. This may imply that the spa- 
tial pattern closely connects to the length of the sys- 
tem. 

The spatial pattern in the configuration of a circle 
clearly shows the characteristic of irregular multipeak 
patterns(see Fig. 8). These multipeak patterns were 
also detected for allosteric enzyme reactions in two di- 
mensional space by Catalano et al.[5]. 

CONCLUSIONS 

"]'he possible spatial pattern in the interacting 
CSTRs where the endothermic reaction of a Langmuir- 
Hinshelwood type occurs, is studied. The regular and 
irregular multipeak patterns are detected in the one- 
and two-dimensional space. 

"[he significance of these results from the chemical 
engineering viewpoint, may predict the lateral non- 
uniform distribution of concentration and temperature 
in packed bed reactors and symmetry-breaking of pro- 
pagating fronts in combustion problems. The study of 
the possible symmetry-breaking and the standing and 
traw'Jling waves for a first-order exothermic reaction 
when the heat interaction is stronger thai.1 the mass 
communication, deserves further work. 

NOMENCLATURE 

C i : 

Co : 
Cp : 
E : 
A H :  
k : 
L : 

h : 

q : 

q m  : 

qt : 
R : 
t : 
Ti : 
T o : 
V : 
X : 

Concentration at the i-th CSTR 
Inlet feed concentration 
Heat capacity of the fluid 
Activation energy 
Heat of reaction 
Reaction constant 
Dimensionless chemisorption equilibrium con- 
stant 
Total number of CSTRs 
Feed flow rate 
Flow rate of mass interaction 
Flow rate of heat interaction 
Reaction rate vector defined in Eq. (3) 
time 
Temperature at the i-th CSTR 
Inlet feed temperature 
Volume of a CSTR 
Dimensionless concentration vector 

Y : Dimensionless temperature vector 

a 

7 

.r 

A 

A : 

/2,, 

P 

R 

Greek Letters 
kV : Dimensionless kinetic constant (= ) 
q 

: Dimensionless heat of reaction t ( -  ,_4H)Co , , J pCpTo 

E 
Dimensionless activation energy (= RTo / 

Eigenvalues of reaction-and-transport matrix 
Structure matrix 
Eigenvalues of a structure matrix d 

Dimensionless mass interaction rate (= !:1,,, ) 
q 

Dimensionless heat interaction rate (= qt  ) 
q 

Density of the fluid 
Azimuth angle 

Superscript 
* : Perturbed CSTR 

Subscripts 
i : Cell number 
s : Straight string 
r : R i n g  
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