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Abstract—The dynamic behavior of coupled continuous stirred tank reactors in which the nonisother-
mal Langmuir-Hinshelwood type reactions occur, exhibits several types of pattern formation. The regular and
irregular multipeak patterns are detected for the endothermic reaction of a Langmuir-Hinshelwood type
when the heat communication between the neighboring cells is larger than the mass interaction. These ob-
servations may imply the possible existerice of spatial structure in a matrix of catalysts, the non-uniform distri-
bution of concentration and temperature in packed bed reactors, and corrugated propagating fronts in com-

bustion problems.

INTRODUCTION

During the past decades the non-uniform steady
states emerging from a perfectly homogeneous steady
state, have received a great deal of attention. Pattern
formation in developmental biology, Benard convec-
tion in fluid dynamics, formation of coherent light in
the laser, and occurrence of spatio-temporal concentra-
tion and/or temperature waves in chemically reacting
systems are well-known examples of stable ordered
structures evolving from an unstable uniform state.

The pioneering work on pattern formation was per-
formed by Turing[l]. He studied a mathematical
model of a growing embryo and suggested that a sys-
tem of chemical substances, called morphogens, re-
acting together and diffusing through a tissue, is ade-
quate to account for the main phenomena of morpho-
genesis. Such a system, although it may originally be
quite homogeneous, may develop a pattern of struc-
tures due to the instability of homogeneous equilib-
rium, which is triggered off by random disturbances.

Since then a plethora of papers have appeared to
use Turing's idea toward structure formation pheno-
mena in various disciplines. Goodwin[2] proposed a
phase-shift model for spatial and temporal organi-
zation in developing systems. Goldbeter[3] studied
one-dimensional pattern formation for an allosteric en-
zyme reaction and detected standing as well as pro-
pagating concentration waves. The parameter domain
of spalial structures for several models in an attempt to
elucidate the Turing's pattern formation, was in-
vestigated by Murray[4]. Catalano et al.[5]
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demonstrated various types of pattern formation for
allosteric enzyme reactions in the one-and two-dimen-
sional space.

It should be noted that all authors mentioned
above considered isothermal systems. [n this paper we
consider an array of nonisothermal continuous stirred
tank reactors in which a Langmuir-Hinshelwood type
reaction occurs. The spatial structures are investigated
for the geometry of multiple cells in the one-and two-
dimensional space. The effect of geometry and system
size on pattern formation will be also discussed.

GOVERNING EQUATIONS

Consider an one-dimensional array of CSTRs with a
string and ring configuration (see Fig. 1). The mass and
energy balances for these systems, in which a Lang-
muir-Hinshelwood type reaction occurs, are represen-
ted by coupled differential equations in the dimension-
less form:

£~ 1= X-RX Y) ¢ umaX w
1Y AR X, Y1+ A 2
where
RiX yi=— % vy (3)
~= =~ (Q+LX)? ‘

under the following assumptions:
(1) The cell volume, the feed composition and tem-
perature, and the flow rate to all cells are identical.
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Fig. 1. Schematic diagram of interacting CSTRs.
The geometry is: (a) string (b) ring.

That means every cell in Fig. 1 is exposed to the same
surroundings.

(2) A single chemical reaction occurs in each cell,
the rate of which differs from one CSTR to another on-
ly if the concentration of a single component and the
temperature vary.

(3) The rates of exchange of mass and heat between
neighboring cells may be described by the product of
an exchange coefficient and the concentration and
temperature difference.

In this paper the i-th element of the vector quantities,
X and Y, refers to the dimensionless concentration
and temperature at the i-th cell, respectively. We have
also denoted g the dimensionless heat of reaction, «
and L the dimensionless kinetic constants, 7 the di-
mernsionless activation energy, C, the feed concentra-
tion. T, the feed temperature, q the feed flow rate, V
the volume of a CSTR, y,, and g, the dimensionless ex-
change coefficients of mass and heat between neighbo-
ring cells, respectively and ¢ the dimensionless time

defined by
e % e % ~ R?U
= %,—t a== ?f— 8= __pAC—Ij’i‘f(L
Him ™ %ﬂ = % (4)

The structure matrix, 4, represents the geometry
of systems in question. For the one-dimensional con-
figuration shown in Fig. 1, the structure matrices for
the string (4 ) and ring (4) are given by

_1 1 0 ......... 0
1_2 10 ...... O
ész 60 1 -210-- 0 (5)
0 ............... 01_1
and
-y 1 00 -oveeenns 0 1
1 =2 1 0 --weeeees 0 0
A= 0 1 -2 10 - Q0 0 6)
1 0 ......... O ...... 1_2

Eigenvalues and eigenvectors of these structure mat-
rices are well known and the details are reported in
the literature[6,7].

From a chemical engineering viewpoint the descri-
ption for an assemblage of catalysts can be visualized
as an array of CSTRs. The interacting protrusion from
catalytic wire (fuzzy wire model) proposed by Jensen
and Ray[8] and the monolithic catalytic converter
which, by virtue of its design, has a large number of in-
teracting paralle! flow channels, are also described by
interacting local reactors.

LINEAR STABILITY ANALYSIS

The number and character of steady states in a sin-
gle cell are readily reduced from Egs. (1) and (2). Its
mathematical description is obtained by setting the ex-
change coefficients, x,,, and g, to zero and changing
the vectors to scalar quantities with eliminating the
subscript i. It is obvious that a steady state of a single
cell is also a steady state of an array of cells, regardless
of the magnitude of u,, and u,. We shall refer to these
states as the “uniform steady states”. There are one,
three or five uniform steady states(6]; the number cor-
responds to the number of steady states for a single
cell. These uniform steady states arise when the ex-
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change coefficients between the neighboring cells
have extremely large values.

The stability analysis of uniform steady states in
the cellular network was developed in a very elegant
way by Othmer and Scriven(7]. Using their approach,
the effect of changes in the network topology on the
dynamic pattern of interacting multiple cells, can be
treated systematically. They also predicted the occur-
rence of standing or travelling waves. Kennedy and
Aris[9] demonstrated the bifurcation of uniform
steady states to the asymmetric steady states and
homogeneous oscillatory motion.

In order to examine the stability of uniform steady
states the linear stability analysis is applied in this
work. When the system equations (1) and (2) are line-
arized about a particular uniform steady state, the sta-
bility is determined by the eigenvalues of the following
reaction-and-transport matrix, A :

oR _9R
Tlmgx THmhs aY
A= B N (7)
- R _10g2R
ﬂaz 1+ ay_ +/1t /\s
where A(s=12, ..., N) are the eigenvalues of the

structure matrix (A). The partial derivatives in Eq. (7)
are evaluated at a uniform steady state.

In order to determine the stability of uniform
steady states to infinitesimal perturbations, the pro-
cedure is first, deduce the structure matrix of the geo-
metry and calculate its eigenvalues A,; and second for
each of the N numbers, A, calculate the eigenvalues ¢
of the reaction-and-transport matrix, A. Then if all 2N
eigenvalues, ¢, have negative real parts, the uniform
steady states are stable. If one or more of these eigen-
values have positive real parts, the uniform steady sta-
tes are unstable.

NUMERICAL RESULTS

Numerical computation of symmetry breaking was
performed for an array of nonisothermal continuous
stirred tank reactors in which the endothermic Lang-
muir-Hinshelwood type reaction takes place. The
values of the governing parameters are reported in
Table 1.

Table 1. The values % governing parameters
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Fig. 2. Instability region of uniform steady states for
the string.

total cell number is 2

- total cell number is 10

The instability region in(g,, p,) parameter plane
for the string is depicted in Fig. 2. The parameter
values of ., and y, in the upper part of solid and dot-
ted lines give rise to the instability of uniform steady
states for ten and two interacting cells, respectively.
The instability region of a uniform steady state is enlar-
ged with the increasing number of cells. This implies
that the symmetry-breaking instability strongly de-
pends on the length of the system.

The concentration and temperature histories for an
array of ten cells in the configurations of the string and
ring with ne values of u#,, and y, in the instability
region, are depicted in Figs. 3 and 4, respectively. The
number in these figures represents the cell number
and the perturbed cell is described as the asterisk (*)
on the cell number. The transient concentration and
temperature diverge from an initial state, very close
state to the uniform one, eventually come to rest at a
stable nonuniform state. These results state that if ten
cells were extremely well isolated, each would remain
in that state for any kind of perturbation. As they are
brought into closer communication through the mass
and heat transfer, the stability of each cell will be lost
spontaneously and every cell will travel to the new
steady states.

The spatial profiles for the same parameter values
as those in Figs. 3 and 4, clearly show the occurrence
of spatial structure in the geometry of the string and
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Fig. 3. Transient behavior of unstable uniform Fig. 4. Transient behavior of unstable uniform
steady states in the string: {a) concentration steady states in a ring: {(a) concentration (b)
(b) temperature. ., =0.1,4,=0.5, N=10. temperature. tn= 0.1,4,=.0.5, N=10.
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Fig. 5. Spatial profiles in the string: (a) concentration (b) temperature. 15n=0.1,4,=0.5, N=10.
Time is; (1) 0.0, (2) 10.0, (3) 20.0, (4) 30.0, (5) 40.0, (6) 50.0, (7) sleady state.
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Fig. 6. Spatial profiles in the ring: (a) concentration (b) temperature. £, =0.1, #,=0.5, N=10.
Time is; (1) 0.0, (2) 10.0, (3) 20.0, (4) 30.0, (5) 40.0, (6) 50.0, (7) steady state.
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Fig. 7. Spatial temperature profiles in the string. M/J
um=0.1, 1,= 0,5, N=20.
Time is; (1) 0.0, (2) 10.0, (3) 20.0, (4) 30.0, (5) 40.0, Y
(6) 50.0, (7) steady state. N

Fig. 8. Spatial structures in a two-dimensional cir-

ring, respectively(see Figs. 5 and 6). Of course some cle. #=0.1,1,=0.5 in both directions.

difference in the spatial profiles of steady states exists =10 30 steady state
between the geometry of the string and ring. The effect concentralion (a) (©) (®
of cell number(or length of the system) on spatial temperature (b) (d 0.
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structures is shown in Fig. 7 comparing to the corres-
ponding profiles in Fig. 5. This may imply that the spa-
tial pattern closely connects to the length of the sys-
tem.

The spatial pattern in the configuration of a circle
clearly shows the characteristic of irregular multipeak
patterns(see Fig. 8). These multipeak patterns were
also detected for allosteric enzyme reactions in two di-
mensional space by Catalano et al.[5].

CONCLUSIONS

The possible spatial pattern in the interacting
CSTRs where the endothermic reaction of a Langmuir-
Hinshelwood type occurs, is studied. The regular and
irregular multipeak patterns are detected in the one-
and two-dimensional space.

The significance of these results from the chemical
engineering viewpoint, may predict the lateral non-
uniform distribution of concentration and temperature
in packed bed reactors and symmetry-breaking of pro-
pagating fronts in combustion problems. The study of
the possible symmetry-breaking and the standing and
travelling waves for a first-order exothermic reaction
when the heat interaction is stronger thain the mass
communication, deserves further work.

NOMENCLATURE

. Concentration at the i-th CSTR

: Inlet feed concentration

: Heat capacity of the fluid

. Activation energy

- Heat of reaction

. Reaction constant

- Dimensionless chemisorption equilibrium con-
stant

. Total number of CSTRs

. Feed flow rate

. Flow rate of mass interaction

. Flow rate of heat interaction

: Reaction rate vector defined in Eq. (3)

. time

. Temperature at the i-th CSTR

. Inlet feed temperature

. Volume of a CSTR

- Dimensionless concentration vector

o =

A1

e bhmOOn
I

=z

L0 .0
3

e

—
(=]

=< <

Y : Dimensionless temperature vector

Greek Letters

e : Dimensionless kinetic constant (= E{X)
q

A . Dimensionless heat of reaction (= (- aH)C, )
oC, T,

Y : Dimensionless activation energy (= ———)

RT,

€ Eigenvalues of reaction-and-transport matrix A
4 Structure matrix -
A Eigenvalues of a structure matrix 4

#,, - Dimensionless mass interaction rate (— %")
#, : Dimensionless heat interaction rate (= %‘ )

# . Density of the fluid
¢ : Azimuth angle

Superscript

* . Perturbed CSTR
Subscripts

i - Cell number

s : Straight string
r . Ring
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